UrbanComp

路虽远行则将至,事虽难做则必成。漫漫长路,必见曙光。《荀子•修身》

一种基于深度学习的地外天体巡视器障碍物分割方法

本发明实施例提供一种基于深度学习的地外天体巡视器障碍物分割方法,该方法包括:利用地外天体巡视器获得的图像集及其对应的人工标注图集形成样本集;将所述样本集中的样本分成训练样本、验证样本和测试样本;基于VGGNet卷积网络和U-Net网络构建神经网络;将所述训练样本和所述验证样本输入所述神经网络,对神经网络进行训练得到训练模型;利用所述训练模型对所述测试样本进行测试,得到地外.天体的障碍物分割结果。该方法将精度高的VGG网络局部迁移到本发明网络,在提高了障碍物分割精度的同时还提高了分割速度,可以满足地外天体巡视器实时性需求。

The distribution of greenspace quantity and quality with socioeconomic conditions in Guangzhou

Awareness is mounting that urban greenspace is beneficial for residents’ health. While a plethora of studies have focused on greenspace quantity, scant attention has been paid to greenspace quality. Existing methods for assessing greenspace quality is either highly labor-intensive and/or prohibitively time-consuming. This study develops a new machine learning method to assess greenspace quality based on street view images collected from Guangzhou, China. It also examines whether greenspace exposure disparities are linked to the neighbourhood socioeconomic status (SES). The validation process indicated that our scoring system achieved high accuracy for predicting street view-based greenspace quality outside the training data. Results also show that there were marked differences in spatial distribution between aggregated NDVI (Normalized Difference Vegetation Index), street view greenness quantity and quality. Regression models show that neighbourhood SES is not associated with NDVI. Although neighbourhood SES is associated with both street view greenness quantity and quality index value, street view greenness quality is more sensitive to the change of neighbourhood SES. Our work suggests that policymakers and planners are advised to pay more attention to greenspace quality and greenspace exposure disparities in urban area.

GeoCA v2.4: Geographical Simulation App via Pixel-based Cellular Automata

GeoCA is a free software for the simulation and prediction of a large-scale pixel-based urban development process. GeoCA has been well applied in the fields of urban development process analysis, urban ecological environment analysis and urban planning. GeoCA supports multi-rule mining models, multi-spatial variable processing, geographic location alignment, and automatic memory control for large-scale urban development simulation.

一种面向水质定量遥感应用的遥感影像融合方法

一种面向水质定量遥感应用的遥感影像融合方法,最大限度保持水域提取精度以及水域光谱特性,结合PCA融合、SSVR融合设计了针对水质定量遥感应用的两级融合方法,融合过程引入决策级面向对象的地物分类解译方法,处理结果具备保持精准水体对象像素轮廓和水域光谱特性的特点。大量的实验结果表明。本发明得到水域解译精

一种面向区域覆盖的影像自动镶嵌方法

专利号:201310152637.8本发明公开了一种面向区域覆盖的影像自动镶嵌方法,根据多幅正射影像的有效区域的重叠关系计算出重叠区域多边形的中轴线,并对每幅影像的有效区域按照中轴线进行裁剪,输出每幅影像的镶嵌有效区域,根据镶嵌有效区域获得面向区域覆盖的影像镶嵌线;利用重叠区域内的地物轮廓线对所述的

支持Esri矢量数据的真实城市地块分裂模拟软件(RLPS)

背景说明城市用地类型的分析和变化的基本单元是土地地块(Land Parcel)。城市在发展过程中,城市用地类型和城市功能结构也在不断的发生变化,这会导致较大的土地地块高度破碎化。传统的基于矢量CA模拟没有考虑到地块分裂的过程,势必对结果精度造成影响,因此需要引入更为合理的土地地块分裂方法。目前主流的

UrbanComp

切换主题颜色 | SCHEME TOOL